The rational symmetric signature of manifolds with finite fundamental group

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rational Symmetric Signature of Manifolds with Finite Fundamental Group

defined by (a, fl)o = (ctujl)[M] is a non-singular (l)k-symmetric bilinear pairing. The isometry class of the rational intersection form is determined by the rank if k is odd and by the rank and signature if k is even. We wish to make a corresponding analysis of the equivariant intersection form in the case where M is the total space of a finite G-cover. Let G be a finite group and w: G + { f l...

متن کامل

Diffeomorphisms of Manifolds with Finite Fundamental Group

We show that the group 3i{M) of pseudoisotopy classes of diffeomorphisms of a manifold of dimension > 5 and of finite fundamental group is commensurable to an arithmetic group. As a result n0{DiffM) is a group of finite type. Let M be an «-dimensional closed smooth manifold, where n > 5, and let DiffM be the group of diffeomorphisms of M. The space DiffM (it is a topological space with the C°°-...

متن کامل

The Fundamental Group of S1-manifolds

We address the problem of computing the fundamental group of a symplectic S-manifold for non-Hamiltonian actions on compact manifolds, and for Hamiltonian actions on non-compact manifolds with a proper moment map. We generalize known results for compact manifolds equipped with a Hamiltonian S-action. Several examples are presented to illustrate our main results.

متن کامل

The Fundamental Group of S-manifolds

We address the problem of computing the fundamental group of a symplectic S1-manifold for non-Hamiltonian actions on compact manifolds, and for Hamiltonian actions on non-compact manifolds with a proper moment map. We generalize known results for compact manifolds equipped with a Hamiltonian S1-action. Several examples are presented to illustrate our main results.

متن کامل

The Fundamental Group of G-manifolds

Let M be a connected smooth G-manifold, where G is a connected compact Lie group. In this paper, we first study the relation between π1 (M) and π1 (M/G). Then we particularly focus on the case when M is a connected Hamiltonian G-manifold with an equivariant moment map φ. In [13], for compact M , we proved that π1 (M) = π1 (M/G) = π1 (Ma) for all a ∈ image(φ), where Ma is the symplectic quotient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 1998

ISSN: 0040-9383

DOI: 10.1016/s0040-9383(97)00047-5